Using the Leader Algorithm with Support Vector Machines for Large Data Sets

نویسنده

  • Enrique Romero
چکیده

One of the main drawbacks of Support Vector Machines (SVM) is their high computational cost for large data sets. We propose the use of the Leader algorithm as a preprocessing procedure for SVM with large data sets, so that the obtained leaders are used as the training set for the SVM. The result is an algorithm where the Leader algorithm allows to construct a sample of the data set whose granularity level and computational cost are controlled by the threshold parameter. Despite its apparent simplicity, the proposed model obtains similar accuracies to standard LIBSVM with fewer number of support vectors and less execution times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد الگوریتم‌های داده‌کاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد

Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011